

We use Blue Waters to: Replicate 4-D evolution of mantle dynamics

PI: Lijun Liu Members: Jiashun Hu Tiffany Leonard Quan Zhou Zebin Cao

University of Illinois at Urbana-Champaign

NSF

Why Blue Waters?

- Earth's mantle is a complex system whose dynamics requires quantification of many observations (both surface and internal) simultaneously. Traditional mantle models are often simplified and thus incapable to explain various geological processes.
- Thus, we advocate data-oriented numerical modeling:
 - Sophisticated numerical codes.
 - Efficient computational platform.
 - Blue Waters represents the best choice for expanding current modeling capability.

• We extend the scalability of the community mantle convection code CitcomS.

1. Increasing total MPI cores by 10 fold, to ~10,000

Leading to increased model resolution & larger model domain.

12) (Hu et al., *EPP*, 2018)

(Manea et al., Geology, 2012)

- We extend the scalability of the community mantle convection code CitcomS.
 - 1. Increasing total MPI cores by 10 fold, to ~10,000
 - 2. Resolving fine mantle features like slabs and plumes within whole mantle-scale models.

Well-reproduced South American slab

Predicted S. American slab geometry that matches multiple observational constraints:

- Steep & flat slab segments
- Geometry of seismicity distribution
- Slab tears causing abnormal volcanism

(Hu et al., EPSL, 2016)

- We extend the scalability of the community mantle convection code CitcomS.
 - 1. Increasing total MPI cores by 10 fold, to ~10,000
 - 2. Resolving fine mantle features like slabs and plumes within whole mantle-scale models.
 - 3. Developed realistic regional convection models for South America and North America.

Better representation of South American subduction

(Hu et al., *EPSL*, 2016)

Constrained mantle flow

Allowing for the quantification of mantle deformation.

(Hu et al., EPSL, 2017)

New insight on evolution of continent

Continental lithosphere has a layered density and is less stable than previously thought.

(Hu et al., *Nature Geoscience*, 2018)

Better resolution of mantle upwelling below the western United States

(Zhou et al., EPSL, 2018)

Puzzling Yellowstone Volcanic Province

NB

16.5

8 10

15

CRFB: Columbia River flood basalt YS: Yellowstone hotspot track NB: Newberry hotspot track

70

8

10

12

Debated origin:

- Vertically rising mantle plume
- Shallow subduction processes

Heat below YS predominantly came from the Pacific mantle.

The mantle plume plays a minor role in generating volcanism.

(Zhou et al., *Nature Geoscience*, 2018)

Eastward intrusion of hot Pacific mantle forms YS

(Zhou et al., Nature Geoscience, 2018)

Model validation by seismic anisotropy

- Rock fabric formed by mantle deformation

Observed (dark) and modeled (green) seismic anisotropy due to the subduction history discussed above.

(Zhou et al., EPSL, 2018)

Help to resolve the enigmatic topographic evolution of western U.S.

(Zhou & Liu, EPSL, 2019)

- We extend the scalability of the community mantle convection code CitcomS.
 - 1. Increasing total MPI cores by 10 fold, to ~10,000
 - 2. Resolving fine mantle features like slabs and plumes within whole mantle-scale models.
 - 3. Developed realistic regional convection models for North America and South America.
 - 4. Developing a new-generation of high-resolution global-scale subduction and convection models.

High-resolution global-scale models

Resulting publications

- Liu, L. (2015), *Rev. Geophysics*, 53.
- Liu, L. & J. Zhang (2015), *Earth & Planet. Sci. Lett.*, 450, 40-51.
- Liu, L. & Q, Zhou (2015), *Geophys. Res. Lett.*, 42.
- Heller, P. & L. Liu (2016), *Geol. Soc. Am. Bull.*, doi:10.1130/B31431.1.
- Hu, J., et al. (2016), Earth & Planet. Sci. Lett., 438, 1-13.
- Leonard, T. & L. Liu, *Geophys. Res. Lett.*, 43, doi:10.1002/2015GL067131.
- Hu, J. & L. Liu (2016), *Earth & Planet. Sci. Lett.*, 450, 40-51.
- Liu, L. & D. Hasterok (2016), *Science*, 353, 1515-1519.
- Chen, L. et al. (2017), *Nature Comm.*, 8, doi:10.1038/ncomms15992.
- Hu, J. et al. (2017), Earth & Planet. Sci. Lett., 470, 13-24.
- Kalstrom, K. et al. (2017), *Desert Symp.*, 145-149.
- Zhou, Q. & L. Liu (2017), Geochem. Geoph. Geosys., Geosys., doi: 10.1002/2017GC007116
- Zhou, Q. et al. (2018), *Nature Geosci.*, doi: 10.1038/s41561-017-0035-y.
- Sun, W. et al. (2018), *Solid Earth Sci.*, doi: 10.1016/j.sesci.2017.12.003.
- Hu, J. et al. (2018), *Nature Geosci.*, doi: 10.1038/s41561-018-0064-1.
- Hu, J. et al. (2018), *Earth Planet. Phys.*, 2(3), 189-207.
- Zhou, Q., et al. (2018), *Earth & Planet. Sci. Lett.*, 500, 156-167.
- Zhou, Q. & L. Liu (2019), *Earth & Planet. Sci. Lett.*, 514, 1-12.
- Chang, C. & L. Liu (2019), *J. Geophys. Res.*, 124, doi:org/10.1029/2018JF004905.

Media exposure & outreach

Science Magazine Nature Geoscience Science News Scientific American Yahoo News **Billings Gazette** Newsweek Yellowstone Insider Science Daily Daily Mail Science Node **Physics Today** UPI News, Cosmos Science Bull. My Science NSF, PhysOrg NCSA/UIUC NSF U. of I. news Daily Illini etc.

SCIENTIFIC AMERICAN.

Subscribe

THE SCIENCES Yellowstone's Supervolcano Gets a Lid

The giant volcano lurking under the state of Wyoming might not have originated from a rising plume of hot rock, as previously thought

ScienceDaily

Science News

≡

from research organizations

Strength of Earth's outer shell can be measured, weak spots pinpointed

Planetarium presents new plate tectonics hypothesis

April 18, 2018
Prospectus Editor
O Comments
Greg Gancarz, Parkland College,
Prospectus News, Staerkel Planetarium

Photo by gregGANCARZ | Pictured is the inside of the Staerkel Planetarium.

There's a new theory for how the Yellowstone National Park supervolcano gets its hotspot

BRETT FRENCH french@billingsgazette.com Jan 1, 2018

79¢ FOR THE FIRST MONTH

PHYS ORG

Continental interiors may not be as tectonically stable as geologists think

ratonic lithosphere with a high-density root undergoes delamination when perturbed by mantle plumes from

