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Essential Elements of Neutrino Mechanism  
 

!  Pseudo-Chandrasekhar core collapses for hundreds of seconds 
!  Bounces at nuclear densities and launches a shock wave 
!  Shock wave stalls due to breakout neutrino losses and 

photodissociation of accreta within 10’s of milliseconds at ~100-150 
km into an accretion shock 

 
!  Neutrino emission from the inner core (PNS) heats the “gain region” 

behind the shock, and drives turbulent convection 
!  Neutrino energy deposition behind the shock and turbulent pressure 

together eventually overcome the ram pressure of the continuing 
accretion to launch a supernova  

!  Delayed Explosion 
 
!  Core-collapse supernova explosion is a critical phenomenon/

bifurcation between steady solutions and exploding solutions 
!  Multi-D (expensive) necessary because most models don’t explode 

(aren’t reenergized) in 1D (spherical), but require the extra turbulent 
pressure/stress of neutrino-driven convection (and other effects) 

 



Core-Collapse Theory: What’s New?  
 

!  Turbulence crucial to most explosions, necessitating multi-D 
treatment 

!  In the last ten years, we could do multiple 2D simulations every year 
to explore parameters, understand systematics, and explore 
progenitor structure dependence. 

!  Techniques improved and computers sped up; resolution-dependence 

!  Can now do multiple 3D simulations per year (and afford to make a 
few mistakes!) 

!  GR, Many-body neutrino-matter corrections (more to do), and PNS 
convection lead to enhanced νµ  losses,  faster contraction, hence 
hotter νe and anti-νe neutrinospheres 

!  Incorporated inelastic neutrino-matter processes – extra neutrino 
heating 

!  Accretion of the Si/O interface; seed perturbations of progenitor (?) 

 



FORNAX:	1D,2D,3D,	MulD-Group,		
RadiaDon/Hydrodynamics	



FORNAX:	1D,2D,3D,	MulD-Group,	
Explicit	RadiaDon/Hydrodynamics	

!  Solves the Two-Moment Transport Equations,  with 2nd and 3rd moment 
closures (not “ray-by-ray”); second-order accurate in space and time 

!  Explicit Riemann Godunov-like solution to the Transport operator  
!  Terms of O(v/c) included in transport; inelastic/redistribution scattering 
!  Implicit solution to the local transport source terms 
!  Explicit hydro; full energy and momentum couplings – HLLC   
!  Conserves energy and momentum to machine precision 
!  Very good energy conservation with gravity included  
!  “6”– Dim. = 1(time) + 3(space) + 1(energy-group) + vector Flux 
!  Logically spherical coordinates – general metric/covariant formulation 
!  Multipole Gravity (includes GR-like modifications to the monopole) 
!  Multi-D calculated to the center - Core refinement (“dendritic grid”) – 

improves timestepping by many factors (!); static mesh refinement 
!  Good strong scaling in core count and scaling in energy group 
!  Result: Fast multi-D supernova code (by factor of  ~5-10 x many other 

codes) 
!  Skinner et al. 2016 ; Radice et al. 2017; Burrows et al. 2018; Skinner et al.  

2019; Burrows et al. 2019; Vartanyan et al. 2018,2019; Nagakura et al.    



FORNAX	(cont.)	

!  Includes: Inelastic scattering off electrons 
!                 Inelastic scattering off nucleons 
!                 Includes in-medium Many-body response corrections 
                    (Horowitz et al. 2017) 
!                General-relativistic monopole gravity correction  
                   and gravitational redshifts (can compare with Newtonian) 
!                Multi-D transport, with rbr+ option (for comparison) 
!                Weak magnetism and recoil corrections 



Fornax	Papers	

!  Wallace et al. 2016 – Neutrino breakout signal 
!  Skinner et al. 2016  - Ray-by-ray+ study 
!  Radice et al. 2017 – Electron-capture supernovae 
!  Burrows et al. 2018 – Crucial component study 
!  Morozova et al. 2018 – Gravitational wave signal (2D) 
!  Vartanyan et al. 2018 – “Revival of the fittest” 
!  Seadrow et al. 2018 – Signals in neutrino detectors 
!  O’Connor et al. 2018 – 1D code comparison 
!  Skinner et al. 2019 – Fornax code paper 
!  Radice et al. 2019 – Gravitational waves (3D) 
!  Vartanyan et al. 2019 – 3D explosion model 
!  Burrows et al. 2019 – Multiple low-mass 3D explosion models 
!  Nagakura et al. 2019 – 3D model Resolution study 
 
   



Recent	3D	Fornax	SimulaDons		
with	Necessary	Realism	

!  9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25 
solar mass models (default physics and 
resolution) 

!  19 solar mass model: low, medium, high angular 
resolution; with and without Horowitz correction; 
monopole versus multipole 

!  Default resolution: 678 x 128 x 256; 12 energy 
groups; dendritic grid 

(~50 2D models performed: 678 x 128)
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Important	Roles	of	Progenitor	Models:	
	

	Density	Structures,	RotaDonal	Profiles,	
Seed	PerturbaDons	

	
	



Different Groups, Same ZAMS Mass 



Vartanyan, Burrows, et al. 2018b

Progenitors from Sukhbold et al. 2018



Spatial Resolution Dependence

Nagakura et al. 2019 
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New Fornax 3D Simulations 

Adam Burrows, David Vartanyan, David Radice, Aaron 
Skinner, Viktoriya Morozova, Josh Dolence 
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Supernova Neutrino Detection 

SUPERK, HYPERK, DUNE, JUNO, ICE CUBE



SN Neutrino Observatories 

Super-Kamiokande
(Water Cherenkov) 

DUNE
(Liquid Argon TPC) 

JUNO 
(Hydrocarbon Scintillator)

ICECUBE
(Longstring Ice)
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Gravitational Radiation 
Signals from Core-Collapse 

Supernovae 

Radice, Morozova, Burrows, Vartanyan et al. 
2018-2019 
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3D (thick) and 2D (thin) Models
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Radice et al. 2019



Core-Collapse Theory: A Status Summary  
 
!  Can now perform many 3D simulations per year on HPC resources such as Blue  
!  Waters! 
!  Proximity to critical explosion curve amplifies effects of sub-dominant processes, etc. 
!  Can explain current differences between groups (!?) 
 
!  Turbulent convection is Key Enabler of explosion for (almost) all viable mechanisms; 

turbulent stress, simultaneous accretion and explosion 
!  Neutrino-driven convection > SASI (when object explodes to yield SN) 
!  SASI is not a mechanism – can’t generate much entropy; failed models show SASI (spiral 

modes) 
!  Accretion of the Si/O interface 
!  3D different from 2D (turbulent pressure, spectrum; scales)!  
 
!  Various heating processes (in-medium/many-body, inelastic on electrons, inelastic on 

nucleons) add “non-linearly” 
!  Structure factor/many-body corrections! Neutrino-matter interactions! 

!  Proto-neutron Star (PNS) Convection - boosts  νµ  neutrino luminosity 
!  Seed Perturbations 
 
!  Progenitor profiles/structure important! (e.g., Meakin & Arnett; Couch et al. 2015; B. 

Muller et al. 2016); Seed Perturbations, Density profiles, Si/O shelfs? 
!  Rotation!? 
!  Crucial role for microphysics – many-body/structure-factor corrections, inelastic 

scattering; when near critical curve, small effects are amplified – (partial) origin of 
differences between groups  

 



Fo
rn

ax
: 

3D
 O

ff
-C

en
te

r 
Se

do
v 

Bl
as

t 
W

av
e 



16 solar mass




