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I use Blue Waters to
simulate thunderstorms at high resolution to study turbulence 
prediction for aviation operations in the midlatitudes and tropics
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Turbulence scales: 10-1000 m



Motivation
• Global air travel is predicted to increase at a rate of 5% over the 

next 5 years
� Asia Pacific and Latin America to increase flights by 6%

• 65% of weather related incidents are caused by turbulence

• Delays, structural damage, injuries to passengers and crew, 
instrumentation failure
� 500 passengers and crew injured between 2002-2016
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Statista (2018); Sharman and Trier (2018); FAA (2017); Ball et al. (2010)

Increase safety and efficiency

Courtesy of A. Karboski

More planes in the sky



Sources of CIT
• Out-of-cloud convectively induced turbulence (CIT)

4Sharman and Trier (2018); Zovko-Rajak and Lane (2014); Lane and Sharman (2014); Lane et al. (2012); Lane et al. (2003); Pantley and 
Lester (1990); USAF (1982)

• 1-5 km above convection
• > 100 km away

1) Enhancement of the background wind shear by convection 
penetrating into the upper troposphere
2) Cloud-induced deformation at the cloud boundary caused by 
buoyancy gradients
3) Convectively generated gravity waves that propagate and break 
above convection (need high resolution to replicate)
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Convection= thunderstorm



FAA Thunderstorm Guidelines
• Limitations

� Convectively induced turbulence (CIT) 
can occur farther away than 20 mi

� Vertical avoidance threshold has been 
disregarded

� Regulations are solely based on 
continental midlatitude convection

� U.S. aviation operations in the tropics
abide by the same guidelines

� Developing convection turbulence 
hazards are not addressed by FAA 
guidelines
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Extreme Caution

35 kft 20 miles

FAA (2017) 
Make steps towards improving FAA Thunderstorm guidelines



Methodology
• 6 simulations of CIT using the Weather Research and Forecasting 

(WRF) model v3.7
� 500-m horizontal grid spacing, 350-m vertical grid spacing, 10 minute 

output
� Initialized with ERA-Interim

• Turbulence diagnostics
� Eddy dissipation rate and structure functions
� Static stability, vertical wind shear, vertical velocity

• Developing convection verses mature convection
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Methodology
Case Day Location Probable Cause # of Grid Points Cores Time Step Run Time/6 hr Sim. Time

03 Aug 2009
Dominican
Republic

Flew through a convective 
updraft 109,024,542 2048 9 sec ~12 hrs

10 Jul 1997
North

Dakota
Flew over developing

convective updraft 25,714,260 2048 3 sec ~4 hrs

27 Dec 2014 Java Sea Navigating around severe
convection 93,758,148 1024 6 sec ~22 hrs

04 Jun 2018
New 

Mexico Flew through a hail core 54,960,192 1024 6 sec ~13 hrs

20 Jun 2017
Gulf of 
Mexico

Flew between two lines of 
developing convection 57,629,880 2048 6 sec ~14 hrs

29 Jun 2018
North 

Dakota
Flew north of severe 

convection 50,118,750 2048 9 sec ~7 hrs

• Large domains to capture the evolution of 
synoptic and mesoscale features at 10 minute 

output



Results

20 June 2017
29 June 2018

Echo Top Heights
Echo Top Heights
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• Small scale features of convection
• Convective depth is related to  gravity wave generation 

Tropopause

Tropopause



Results

SEV

MOD

LGT

Structure FunctionsEddy dissipation rate
29 June 201829 June 2018

ET ≥ 8 km ET ≥ 10 km ET ≥ 12 km 

9

• Large variation in areal coverage and intensity of 
turbulence



Results
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Results

• Turbulence distributions near mature convection vs developing
convection

� Likelihood of stronger turbulence increases near developing COs
� Tropical turbulence distributions are influenced most by convective stage

DevelopingMature

Midlatitude continental cases
Tropical oceanic cases   
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Results

• Vertical wind shear distributions near mature convection vs developing 
convection
� Vertical wind shear increases near developing convection for both regions
� Vertical wind shear is influenced by storm type

DevelopingMature

Midlatitude continental cases
Tropical oceanic cases   
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Broader Impacts
• FAA Thunderstorm Guidelines
� Development of guidelines that are region, storm stage, and storm 

type specific, directional preference 

• Limitations of turbulence diagnostics in tropical regimes

• Computational expenses needed to predict turbulence at high 
resolution

• Need many more simulations to create statistical data base to 
influence policy change at government level
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Conclusions
• Blue Waters was utilized to make high resolution simulations of 

thunderstorms for six turbulence encounters

• Various turbulence diagnostics were calculated and compared

• Turbulence near developing convection and mature convection 
was compared

• Environmental stability and vertical wind shear were analyzed 
near convection 

• More research is needed to investigate turbulence near 
developing convection in the tropics
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