Dashboard /... / SEAS Summary 2019-04-23

Job resiliency and application fault-tolerance

Created by Galen Arnold, last modified on May 28, 2019

Failure modes

* node failure

PROGRAMMED DATA PROCESSOR-1

hardware
software (OOM Kkiller , likely caused by application load balance)
can lead to network failure in our Cray because "the network is the computer”

* HSN network failure (really as va

ing degrees of degradation)

. W
* via node failure in your job or external to your job
e can lead to Lustre errors
« Lustre outage (varying degrees of severity similar to network issues)

momentary (< 15 minutes)

via network degradation (seen as a slow filesystem)

disk failures causing degraded read performance during rebuilds
via storage network outage or storage server(s) down

can lead to system outage
« lllinois

metadata server Denial-of-Service (too many small i/lo and directory operations, ex: find ...

https://wiki.ncsa.illinois.edu/collector/pages.action?key=CRAY&src=breadcrumbs-collector
https://wiki.ncsa.illinois.edu/display/CRAY/SEAS+Summary+2019-04-23?src=breadcrumbs-parent
https://wiki.ncsa.illinois.edu/display/~arnoldg
https://wiki.ncsa.illinois.edu/pages/diffpagesbyversion.action?pageId=84511129&selectedPageVersions=31&selectedPageVersions=32
https://wiki.ncsa.illinois.edu/display/CRAY/Job+resiliency+and+application+fault-tolerance

¢ thunderstorms: NPCF-close lightning strikes
« issues with cooling water changeover Spring or Fall

¢ can lead to system outage

For a system with > 22k nodes, Blue Waters is remarkably resilient. When most of the failures above occur (particularly single-node failures), they rarely result in a full system outage. The
system can ride-through multi-node failures and even full-rack (cabinet) failures. Single-disk failures an almost daily event and mostly transparent to the user community. That said, it's good
to plan for the worst while expecting the best.

Acceptance tests from early in the deployment

Test-286: Job Scheduler Job Fault Tolerance

Procedure:
**Still need to verify on JYC, hoping to update this soon.

Part 1(9.9.3-2):

1. submit a 10 node job with 2 steps First step job: slow-hello, second step job: hello
2. kill one node (echo c > [proc/sysreq-trigger as root on compute node)

3. verify job is removed and nodes freed, hello has not been run

Part 2 (9.9.3-5):

1. submit a 10 node job with 2 steps, enable resiliency, First step job: slow-hello, second step job: hello
2. kill one node {echo c > [proc/sysreq-trigger as root on compute node)
3. verify both jobs are restarted and complete

Results:

BW:

Part1:

Submit 30 node:16ppn job without resiliency, killed 1 node

Job1 died and nodes checked and released.

Part2

Submit 30 node:16ppn job with 32p resiliency, killed 1 node

Job 1 relaunched using 1less node and then job 2 ran fine with 1 less node.

Notes:

text here (if any)

Dashboard /... / Test Procedures and Results B & # Edit 7 Save for later @ Watch = Share

Test-410 - Job resiliency to node failures

Created by Celso Mendes, last modified on Dec 01, 2012

Test 410: Job resiliency to node failures

Procedure:

Test #1: node failure through xtnmi

Using the xtnmi command, we injected a kernel-panic into a node using the out-of-band system. This makes a node unavailable. We used a Cray-provided MPI code
to test this functionality. The test aims at verifying the scheduler does not stop the application even if one of the nodes the application is running on goes down.
Test #2: node failure through kernel panic

Using admin rights, we logged into a node and directly injected a kernel-panic. We used the second test provided by Cray, another MPI program that verifies the
same feature.

Results:

Tests executed on Blue Waters on Nov.30/20172

Results from Test #1:

The MFI program detects the failure of a node and gracefully finishes execution. The PMI library provides the right interface to query the system for failed nodes.
This test was successful, and the program output is shown in file test1_output.txt .

Results from Test #2:

This test was successful, and the program output is shown in file test2_output.txt .

Defenses and resiliency techniques for the community

Single-node failures

& Cray-specific: aprun -R <pe_dec> ...
From "man aprun"

-R pe_dec Enables application relaunch so that should the application
experience certain system failures, ALPS will attempt to

relaunch and complete in a degraded manner. pe_dec is the
processing element (PE) decrement tolerance. If pe_dec is
non-zero, aprun attempts to relaunch with a maximum of
pe_dec fewer PEs. If pe_dec is 0, aprun will attempt
relaunch with the same number of PEs specified with original
launch. Relaunch is supported per aprun instance. A
decrement count value greater than zero will fail for MPMD
launches with more than one element. Options -C and -R are
mutually exclusive.

Modify your job script to request more nodes than you need (-I nodes=n+1) and combine multiple aprun invocations with your checkpointing scheme.

Cray-specific: multi-aprun example

#!/bin/bash

#PBS -1 nodes=1025:ppn=32:xe,walltime=08:00:00

#

assert: job is designed to run through walltime (saves state via checkpoints)

aprun -N 1024 -n 16484 -d 2 ./a.out
in the event a node fails, run again, a.out knows to read from available checkpoint via configuration/input file
aprun -N 1024 -n 16484 -d 2 ./a.out

alternative, use a bash loop

#while true

#do

aprun -N 1024 -n 16484 -d 2 ./a.out
#done

To do : re-check XSEDE for the slurm NONSTOP plugin/config and make a note if found (no Xsede systems appear to support slurm NONSTOP — documentation not found)

Network degradation

Cray-specific: topology-aware-scheduling and balanced injection
https://bluewaters.ncsa.illinois.edu/topology-aware-scheduling

https://bluewaters.ncsa.illinois.edu/topology-aware-scheduling

Do Nothing

If no special flags are specified, the topology-aware scheduler optimizes communication performance by placing
the job into a convex cuboid node allocation.

Specify Application Communication Properties

qsub -l flags=commintolerant

The commintolerant flag prevents the scheduler from placing the job next to a large job. For jobs which are
larger than half of any torus dimension, the shortest path between some nodes routes traffic outside the large
job's allocation. If a job is extremely sensitive to interference from outside communication traffic, specifying the
commintolerant flag causes the scheduler to schedule a placement not adjacent to any large jobs, eliminating
such interference. Since the commintolerant flag limits potential placement locations, jobs may experience
longer queue times when using this flag.

qsub -l flags=commtolerant

The commtolerant flag is now set by default. The job will still receive a convex cuboid node allocation, but the
commtolerant flag does allow the scheduler to place the job adjacent to large jobs. If a job is sensitive to
outside communication interference, adjacent large jobs may affect performance.

qsub -l flags=commlocal

The commlocal flag (also now set by default) allows my job to be placed next to others where my prism
dimensions are over half the dimension span where it could route communication through others, but my task
placement keeps most communication pairs within half the dimension away which will limit the interference

imposed on others. (the shortest path between most pairs remains within my placement prism)
qsub -l flags=commlocal:commintolerant
Jobs are both local and intolerant.

https://bluewaters.ncsau.illinois.edu/balanced-injection

To "protect" the network from data loss Cray has enabled a method of throttling
to ensure that the packets on the HSN get to their destination. This is a

https://bluewaters.ncsa.illinois.edu/balanced-injection

global throttling across the torus. To avoid this congestion protection
Cray has developed a concept called balanced injection. Balanced Injection
is a mechanism that attempts to reduce compute node injection bandwidth

in order to prevent global throttling and which may have the effect of
improving application performance for certain communication patterns.

A runtime environment variable called APRUN_BALANCED_INJECTION exists
that enables the user to set the balanced injection parameter for

all the nodes in the user's batch job. The range is from ©

(use the system default value) to 100 (no balanced injection)

and the relationship of the reduction in compute node injection

to APRUN_BALANCED_INJECTION is not linear. The environment variable
needs to be set before the aprun call in the batch script.

export APRUN_BALANCED_INJECTION=64
setenv APRUN_BALANCED_INJECTION 64

Lustre, I/O errors and long term 1/O waits

For short duration events (up to a few minutes), most 1/O calls will block or progress slowly and the only side effect will be the addition to walltime.
Fortran IOSTAT

@ http://lwg5-fortran.org 2003
9.10.4 IOSTAT= specifier
Execution of an input/output statement containing the IOSTAT= specifier causes the scalar-int-variable in the IOSTAT= specifier to become defined with
(1) A zero value if neither an error condition, an end-of-file condition, nor an end-of-record condition occurs,
(2) A processor-dependent positive integer value if an error condition occurs,
(3) The processor-dependent negative integer value of the constant IOSTAT END (13.8.2.5) if
an end-of-file condition occurs and no error condition occurs, or
(4) The processor-dependent negative integer value of the constant IOSTAT EOR (13.8.2.6) if
an end-of-record condition occurs and no error condition or end-of-file condition occurs.

IOSTAT example

1
READ (FMT = "(E8.3)", UNIT = 3, IOSTAT = IOSS) X

IF (I0SS < @) THEN
! Perform end-of-file processing on the file connected to unit 3.
CALL END_PROCESSING
ELSE IF (I0SS > @) THEN
! Perform error processing
CALL ERROR_PROCESSING

00 N OV B~ WN

END IF

C/C++ : check return values for posix i/o routines (fopen, f{read,write,puts,gets...}, fclose), use ferror()

@ from "man ferror"
Return Value
The ferror() function returns a nonzero value to indicate an error on the given stream. A return value of 0 means that no error has occurred.

This example puts data out to a stream, and then checks that a write error has not occurred.

ferror example

1 #include <stdio.h>

2

3 int main(void)

4 A

5 FILE *stream;

6 char *string = "Important information";
7 stream = fopen("mylib/myfile","w");
8

9 fprintf(stream, "%s\n", string);
10 if (ferror(stream))
11 {
12 printf("write error\n");
13 clearerr(stream);
14 }
15 if (fclose(stream))
16 perror("fclose error");
17}

lllinois

Checkpoint your code.

 for timestepping codes, a configurable per N timesteps checkpoint setting
» look at the checkpointing interval calculator: https://bluewaters.ncsa.illinois.edu/storage

https://bluewaters.ncsa.illinois.edu/storage

Checkpointing

All applications should implement some form of checkpointing that limits loss from hardware or software
failures on the system. As the node count of a job increases or the wallclock increases, the likelihood of an

interruption to the job increases proportionally.

To assist with determination of a proper checkpoint interval (the time between checkpoints that will provide a
balance between loss of data due to a job interruption and the time spent performing checkpoint 10) we provide
a utility that reports a recommended checkpoint interval using recent data on node failures and system
interrupts, the desired number of XE nodes, XK nodes or both and the time the application takes to perform a
checkpoint. The formula used in the utility is equation 37 from the 2004 paper by].T. Daly "A higher order
estimate of the optimum checkpoint interval for restart dumps”. A mean time to interruption (MTTI) is
computed and used to calculate a checkpoint interval (time between checkpoints).

Please remove commas when entering the requested node counts. Note that the time to write a checkpoint file

is in hours.
MUMEBER XE NODES 1024
NUMBER XK NODES

TIME FOR A CHECKPOINT (IN HOURS) 0.10

Calculate |

A checkpoint interval of 3.867 hours is recommended. (MTTI = 77.364 hours)

+ One could set the interval dynamically with the C alarm() function and handler. The handler could set a global checkpoint flag indicating the need for a checkpoint at the next iteration.

. https://lwww.gnu.org/software/libc/manual/html_node/Handler-Returns.html#Handler-Returns

1
#include <signal.h>

#include <stdio.h>
#include <stdlib.h>

o v~ W N

/* This flag controls termination of the main loop. */

https://www.gnu.org/software/libc/manual/html_node/Handler-Returns.html#Handler-Returns

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

volatile sig_atomic_t keep_going = 1;
int needcheckpoint = 0;

/* The signal handler just clears the flag and re-enables itself. */

void

catch_alarm (int sig)

{
needcheckpoint = 1;
keep_going = 0;
signal (sig, catch_alarm);

void
do_stuff (void)
{

puts ("Doing stuff while waiting for alarm...

int
main (void)

{

/* Establish a handler for SIGALRM signals.

signal (SIGALRM, catch_alarm);

/* Set an alarm to go off in a little while: 2 seconds from now */
// if (myrank == @) , alarm() could take a value from a configuration file or runtime parameter

alarm (2);

/* Check the flag once in a while to see when to quit. */

while (keep_going)
do_stuff ();

return EXIT_SUCCESS;

*/

")

LAS AVENTURAS DEL GATO EMPRESARIO
| |

Janet, llama a
alguien de Sistemas.
Hay un problema con mi
computadora.

Los pajaros en
YouTube. No
puedo atraparlos.

;Cudlesel
problema?

TOM FONDER TRADUCIDO POR JONATHAN SMITH BUSINESSCATHAPPYJAR.com

Reference material:

man Intro_pmi

Test-410 - Job resiliency to node failures

Test-286 - Job Scheduler Job Fault Tolerance
http://man7.org/linux/man-pages/man3/ferror.3.html
https://www.ibm.com/support/knowledgecenter/en/ssw_ibm_i_71/rtref/ferror.ntm
https://wg5-fortran.org/N1601-N1650/N1601.pdf section 9.10.4 IOSTAT=specifier
https://bluewaters.ncsa.illinois.edu/storage checkpointing interval calculator

man aprun , see -C and -R options

https://slurm.schedmd.com/nonstop.html

https://bluewaters.ncsa.illinois.edu/balanced-injection

Contact wiki@ncsa.illinois.edu with questions regarding this site. | All rights reserved.

©2019 Board of Trustees of the University of lllinois. | Web Privacy Notice

No labels

https://wiki.ncsa.illinois.edu/display/CRAY/Test-410+-+Job+resiliency+to+node+failures
https://wiki.ncsa.illinois.edu/display/CRAY/Test-286+-+Job+Scheduler+Job+Fault+Tolerance
http://man7.org/linux/man-pages/man3/ferror.3.html
https://www.ibm.com/support/knowledgecenter/en/ssw_ibm_i_71/rtref/ferror.htm
https://wg5-fortran.org/N1601-N1650/N1601.pdf
https://bluewaters.ncsa.illinois.edu/storage
https://slurm.schedmd.com/nonstop.html
https://bluewaters.ncsa.illinois.edu/balanced-injection
mailto:wiki@ncsa.illinois.edu
http://www.illinois.edu/
https://www.vpaa.uillinois.edu/resources/web_privacy
http://www.atlassian.com/

