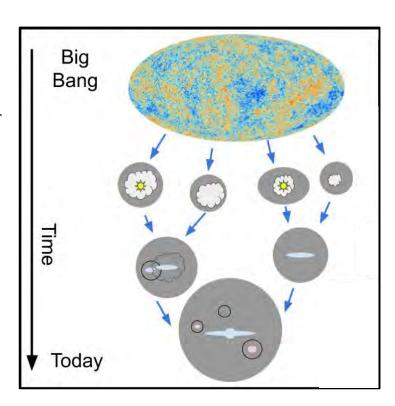
Looking Out for the Little Guy: A Comprehensive Study of Star Formation in Dwarf Galaxies

Elaad Applebaum

Rutgers University
Blue Waters Graduate Fellow

A Few Open Questions

- How big are the smallest galaxies (is there a "smallest" galaxy)?
- How many nearby galaxies are there?
- How do stars form from gas within galaxies?
- Why do galaxies stop forming new stars?
- Can we explain the diversity of galaxy properties we observe?
- ...

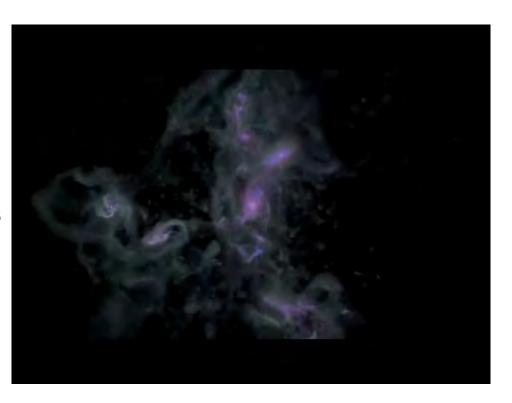

A Few Open Questions

- How big are the smallest galaxies (is there a "smallest" galaxy)?
- How many nearby galaxies are there?
- How do stars form from gas within galaxies?
- Why do galaxies stop forming new stars?
- Can we explain the diversity of galaxy properties we observe?
- ...

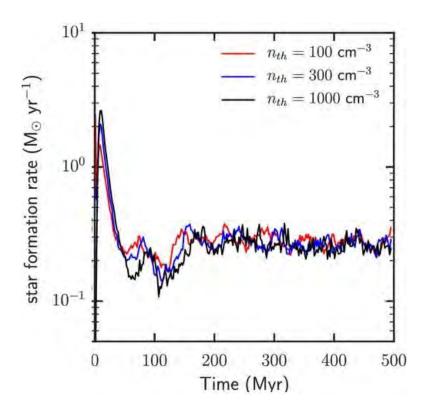
*And what conclusions can we safely draw from our simulations?

Galaxy Formation

- Most (~85%) matter is dark matter
- Initial density perturbations grow under the influence of gravity
- Gas condenses in dark matter "halos", where it eventually forms the first galaxies
- Over time, halos accrete and merge, forming the systems we see today



Galaxy Formation

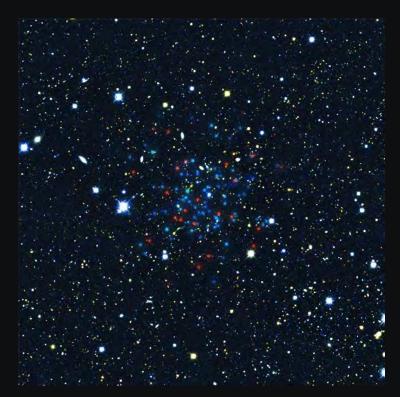


Galaxy Formation

- Gravity + hydrodynamics
- Initially dark matter and gas, then stars form
- Star formation, supernovae, mass and radiation from massive stars all modeled as "sub-grid" recipes

Laissez Faire Galaxies?

- Galaxy "self-regulation" obscures the underlying mechanisms of star formation and feedback
- Constraining the details requires studying a regime that cannot self-regulate


Dwarf and ultra-faint dwarf galaxies

M100 (Distance ~ 50 Mly)

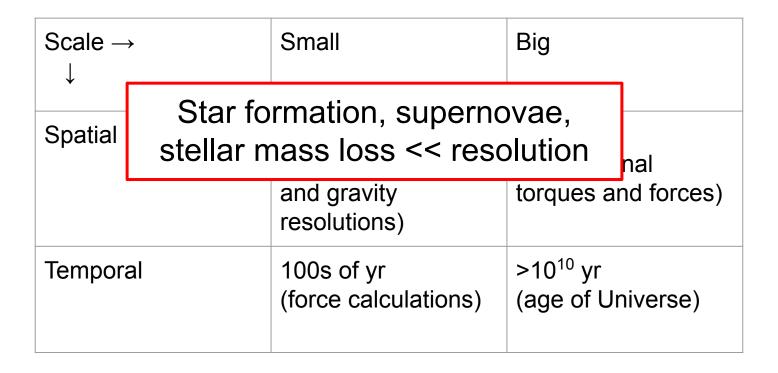
Eridanus II (Distance ~ 1 Mly)

Horologium I (Distance ~ 300 kly)

Credit: V. Belokurov, S. Koposov (IoA, Cambridge)

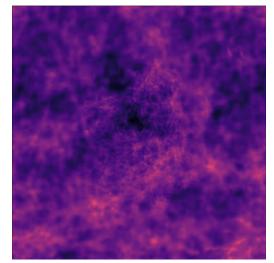
Recap

We want to study very small galaxies, in large enough numbers to draw conclusions about different star formation models, in a fully cosmological context



We need very high-resolution, cosmological hydrodynamic simulations

Why We Need Blue Waters

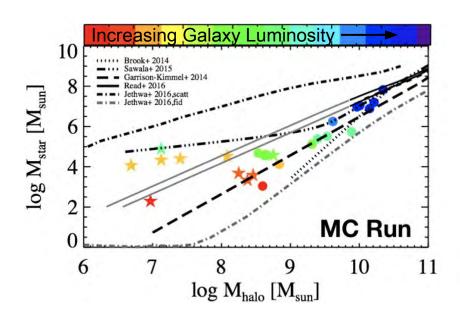

Scale → ↓	Small	Big
Spatial	10s of ly (Hydrodynamics and gravity resolutions)	>10 ⁸ ly (gravitational torques and forces)
Temporal	100s of yr (force calculations)	>10 ¹⁰ yr (age of Universe)

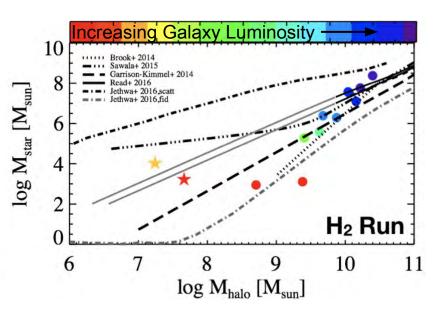
Why We Need Blue Waters

ChaNGa: A Modern Cosmological SPH Code

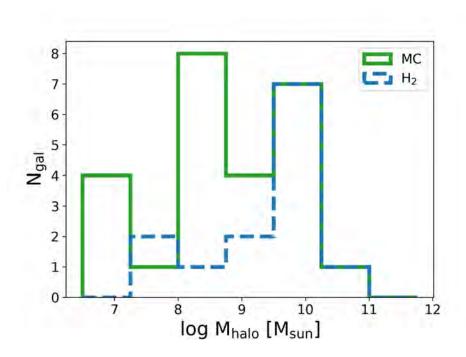
- Includes the SPH methods and physics modules of GASOLINE2
- Uses CHARM++ runtime system
- Designed for scalability on massive parallel systems like Blue Waters

Model Comparisons

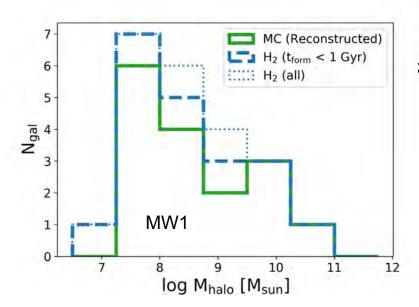

Star Formation Models:

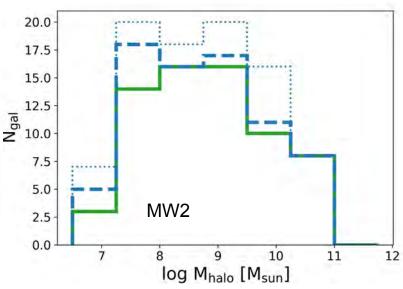

- "Metal Cooling (MC)"
 - Density threshold (100 m_H cm⁻³) in cold (<10⁴ K) gas
- "Molecular Hydrogen (H₂)"
 - Requires sufficient H₂ gas to form stars
 - Tracks non-equilibrium H₂ abundance
 - Pushes star formation to higher densities in un-enriched gas

Environments:


- Far from the Milky Way (>15 Mlyr from Milky Way, in an "isolated" environment)
- Near (analogous to) the Milky Way
 - At cutting-edge resolution!
 - 87 parsec gravitational softening, 11 pc hydro smoothing
 - 994 Msun initial star particle mass
 - 3310 (17900) initial gas (dark matter) particle mass

Results Far From the Milky Way




Results Far From the Milky Way

Results Near the Milky Way

Surprisingly, there is little difference between star formation models!

Summary

- Cosmological hydrodynamic simulations are probing for the first time analogs to the faintest known galaxies
- At low enough halo masses, self-regulation breaks down, and we can test the assumptions used in cosmological simulations
- In environments far from the Milky Way, we have shown that different star formation criteria lead to diverging results
- Near the Milky Way, the denser environment leads to converged galaxy counts and locations. Caution is needed when interpreting nearby observations using simulations of isolated environments

Acknowledgments

Thank you to Robert Brunner, Scott Lathrop and the entire Blue Waters team for their assistance and support during the Blue Waters Graduate Fellowship.

