
Python Best Practices on Blue Waters

Roland Haas, Victor Anisimov (NCSA)
Email: rhaas@illinois.edu

2

Python on Blue Waters

• HPC vendors have limited support of python on their platforms
• BWPY is NCSA supported python deployment on Blue Waters

• Other installations, such as Anaconda in your home directory, are not
supported.

• BWPY resolves typical issues with python deployment
- Lustre filesystem does not tolerate frequent open / close
- Using MPI on Cray is different from that on a Linux cluster
- Compiling numerous python packages is a demanding job

$ module load bwpy

3

BWPY versioning

l BWPY uses major.minor.patch versioning.
- Major versions are for major changes

l Different default python version (including minor)
l Possibly a self-contained glibc, requiring a complete rebuild

- Minor is for package updates
- Patch fixes problems, mostly keeping package versions the same,

unless specific package versions are broken. New packages may be
added.

l Current default: 1.2.4, latest: 2.0.1

$ module load bwpy/x.y.z

4

BWPY submodules

module load
bwpy-mpi MPI support enabled

(should only be used on compute nodes!)

bwpy-libsci_mp BWPY built with OpenMP Cray BLAS libraries
(libsci_mp)

bwpy-libsci_acc BWPY built with auto CUDA BLAS libraries
(libsci_acc)

bwpy-visit BWPY’s VisIt
(requires older vtk, so is a separate module)

bwpy-visit-mpi BWPY’s VisIt with MPI
(only supported on compute nodes!)

Default BLAS: MKL

5

Available python interpreters

l CPython 2.7 (alias: python2)

l CPython 3.5 (aliases: python, python3)
l Cpython 3.6

l Pypy

l Pypy3

Can select interpreter by setting EPYTHON environment variable

Can set the default version of python by using virtualenv (explained later)

Now with much improved CPython compatibility!

$ export EPYTHON=python2.7
$ python --version
Python 2.7.14

6

Behind the scenes

l BWPY is a Gentoo-Linux distribution mounted as a read-only disk image
- Use bwpy-environ tool to mount the image and get access to apps
- Image appears in /mnt/bwpy with subdirectories {single,mpi} etc.
- Image is local to each process and its children
- Use bwpy-environ -- program [args …] to run a program
- Can invoke bwpy-environ directly for debug purpose

7

What to expect
% which python
/usr/bin/python # old interpreter that comes with operating system

% module add bwpy; which python
/sw/bw/bwpy/mnt/bin/python # wrapper around bwpy-environ

% bwpy-environ -- which python
/mnt/bwpy/single/usr/bin/python # actual binary

% which cmake
/usr/bin/cmake # old cmake that comes with operating system

% module avail cmake
cmake/2.8.10.2 cmake/3.1.3(default) cmake/3.9.4

% module add bwpy; bwpy-environ -- cmake --version
cmake version 3.11.2 # bwpy cmake

8

Things to keep in mind when using bwpy-environ
l bwpy-environ starts a new shell

- ENV is lost on exit from bwpy-environ
- Parent variables need to be explicitly exported to be visible

l Mounting the image is expensive, best to do multiple things at once or
stay in bwpy-environ rather than using many Python calls

l When used with aprun, use -b switch
$ bwpy-environ
$ mount | grep bwpy
/mnt/a/sw/xe_xk_cle5.2UP02_pe2.3.0/images/bwpy/bwpy-2.0.1.img
on /mnt/bwpy type squashfs (ro,nosuid,nodev,noatime)

#PBS
aprun -b -n1 -- bwpy-environ -- python –-version

9

Building software against BWPY
l Use with gcc/4.9.3 (bwpy/default) or gcc/5.3.0 (bwpy/2.0.1)
l Export these variables, so these dirs come after -I and –L

l Do not use LD_LIBRARY_PATH to avoid potential incompatibility issues
l Use CMake from bwpy
l Software inside of BWPY has its own include paths, e.g.
/mnt/bwpy/single/usr/include/tensorflow/ for TensorFlow’s
C++ interface

l Compilation must be done in a bwpy-environ shell!

$ module swap PrgEnv-cray PrgEnv-gnu
$ module swap gcc gcc/4.9.3
$ export CPATH="$CPATH:$BWPY_INCLUDE_PATH"
$ export LIBRARY_PATH="$LIBRARY_PATH:$BWPY_LIBRARY_PATH"
$ export LDFLAGS="$LDFLAGS -Wl,--rpath=$BWPY_LIBRARY_PATH”

10

Building scipy/1.2.0 against BWPY
module swap PrgEnv-cray PrgEnv-gnu
module load bwpy
git clone https://github.com/scipy/scipy.git scipy
cd scipy
git tag
git checkout v1.2.0

export CPATH="$CPATH:$BWPY_INCLUDE_PATH”
export LIBRARY_PATH="$LIBRARY_PATH:$BWPY_LIBRARY_PATH”
export LDFLAGS="$LDFLAGS -Wl,--rpath=$BWPY_LIBRARY_PATH”

bwpy-environ -- setup.py build

bwpy-environ -- setup.py install –user # run these under bwpy-environ
bwpy-environ -- pip install --user pytest

cd $HOME
python
import pytest
import scipy
scipy.__version__
scipy.test()

11

Building a python package against BWPY
module swap PrgEnv-cray PrgEnv-gnu
module load fftw
module load cudatoolkit
module load bwpy
module load cray-hdf5

export CRAYPE_LINK_TYPE=dynamic
export CRAY_ADD_RPATH=yes
export CXX=CC
export CC=cc
pip freeze | grep protobuf
pip freeze | grep h5py

export CPATH="$CPATH:$BWPY_INCLUDE_PATH”
export LIBRARY_PATH="$LIBRARY_PATH:$BWPY_LIBRARY_PATH”
export LDFLAGS="$LDFLAGS -Wl,--rpath=$BWPY_LIBRARY_PATH”

mkdir build
cd build
bwpy-environ -- cmake ..
bwpy-environ -- make

12

Creating local python environment with help of Virtualenv

l BWPY (1.2.4) contains 262 python(3) packages

l Extra packages should be installed in a virtualenv to avoid version
conflicts when installing in $HOME/.local
- use --sytem-site-packages option to import the existing packages
- Python in virtualenv is frozen to BWPY version active at creation

l Use pip to install extra packages
- do not use --user option in virtualenv
- use --force-reinstall to overwrite existing packages
- use pip install mypackage==x.y.z to force specific version
- https+git://git-repository-with-setup.py for git repositories

13

Virtualenv examples

$ mkdir myvirtualenv
$ cd myvirtualenv
$ virtualenv -p python2.7 --system-site-packages $PWD
$ source bin/activate
$ pip install myfavoritepackage
$ deactivate

$ export GEOS_DIR=/mnt/bwpy/single/usr/
$ pip install pyproj==1.9.3
$ pip install git+https://github.com/matplotlib/basemap

$ pip install --force-reinstall yt

14

l Ok to run on login nodes, within reason

l Notebook server is accessible Blue Waters wide
- use password to protect the notebook server
- jupyter outputs connection information to stdout on startup
- use second ssh connection to the login node to forward the local port
- jupyter auto-saves notebooks in case connection is lost (or use screen)

Jupyter notebooks

bw$ module load bwpy
bw$ bwpy-environ -- bash -ic jupyter-notebook
The Jupyter Notebook is running at:
http://10.0.0.147:8981/
laptop% ssh -L 8888:10.0.0.147:8981 bw.ncsa.illinois.edu
laptop% open http://127.0.0.1:8888

See https://bluewaters.ncsa.illinois.edu/pythonnotebooks

https://bluewaters.ncsa.illinois.edu/pythonnotebooks

15

Data exploration modules

l BWPY provides large number of
modules for data exploration
- numpy, scipy, sympy

- h5py, netCDF, gdal,
pandas

- astropy, PostCactus

- matplotlib, yt, plotly

l use %matplotlib notebook to
show plots

See https://bluewaters.ncsa.illinois.edu/pythonnotebooks

https://bluewaters.ncsa.illinois.edu/pythonnotebooks

16

Python and MPI
l BWPY includes mpi4py linked against Cray MPI stack

- load as bwpy-mpi submodule
- cannot be used on login nodes, even when using single rank
- only one MPI_Init() per aprun, implicit in import mpi4py.MPI
- use aprun to start Python
- use -d for multi-threaded code or job bundling
$ cat hello.py
from mpi4py import MPI
print ("Hello from rank ", MPI.MPI_COMM_WORLD.Get_rank())
$ qsub -I -l nodes=1:ppn=32:xe -l walltime=0:30:0 -q debug
% module load bwpy
% module load bwpy-mpi
% aprun -n4 -d8 -b -- bwpy-environ -- python ./hello.py

17

Running single-threaded jobs in python
l Do not start hundreds of single-threaded python scripts via aprun

- wasteful since each aprun claims a full node
- slow, each aprun takes ~1min to start and finish
- hard on the system (we will contact you if you abuse this too much)

l Use mpi4py MPICommExecutor
- Put your payload code in a function taking a single argument
- Create a list of tasks
- Pass the list to MPICommExecutor

l Benefits
- Can run multiple tasks on a single node
- New tasks start as soon as previous ones finished
- Pure python code

18

Example of job bundling

See further details in https://bluewaters.ncsa.illinois.edu/job-
bundling#using_multiple_nodes_and_python

from mpi4py import MPI
from mpi4py.futures import MPICommExecutor

def fun(x):
print("on %s print %g" % (MPI.COMM_WORLD.Get_rank(),x))

with MPICommExecutor(MPI.COMM_WORLD, root=0) as executor:
jobs = range(100)
if executor is not None:

executor.map(fun, jobs)

aprun -n $NRANKS -d1 -b -- bwpy-environ -- python ./run.py

https://bluewaters.ncsa.illinois.edu/job-bundling%23using_multiple_nodes_and_python

19

Further reading

Blue Waters documentation

l https://bluewaters.ncsa.illinois.edu/python
l https://bluewaters.ncsa.illinois.edu/pythonnotebooks

l https://bluewaters.ncsa.illinois.edu/data-transfer-doc#gcli

l https://bluewaters.ncsa.illinois.edu/job-
bundling#using_multiple_nodes_and_python

https://bluewaters.ncsa.illinois.edu/python
https://bluewaters.ncsa.illinois.edu/pythonnotebooks
https://bluewaters.ncsa.illinois.edu/data-transfer-doc%23gcli
https://bluewaters.ncsa.illinois.edu/job-bundling%23using_multiple_nodes_and_python

Questions?

This research is part of the Blue Waters sustained-petascale computing project, which is supported by the National
Science Foundation (awards OCI-0725070 and ACI-1238993) and the state of Illinois. Blue Waters is a joint effort of the
University of Illinois at Urbana-Champaign and its National Center for Supercomputing Applications.

