Resolving the Structure of Viral Genomes with Atomic Resolution

Aleksei Aksimentiev Department of Physics University of Illinois at Urbana-Champaign

I use Blue Waters to ...

WHAT IS LIFE?

The Physical Aspect of the Living Cell

BY

ERWIN SCHRÖDINGER

SENIOR PROFESSOR AT THE DUBLIN INSTITUTE FOR ADVANCED STUDIES

... understand molecular underpinnings of life ... build biologically inspired systems

DNA, the blueprint

- How genome ejection is triggered and sustained?
- Can it be used as a drug target?

http://darwin.bio.uci.edu/~faculty/wagner/hsv2f.html

100 nm

Same sign charges

All-Atom Molecular Dynamics Simulation of DNA Condensates

Bonded parameters from quantum mechanics

Standard CHARMM & AMBER Force Fields Are Not Perfect for the Simulation of DNA Condensates

Champaign-Urbana Non-Bonded FIX (CUFIX): Improved Lennard-Jones Parameters for CHARMM & AMBER

CUFIX Improves Simulations of DNA Condensates

Yoo & Aksimentiev, NAR 2016

DNA is packaged by a motor

Takes about 3 minutes to pack DNA 130 times longer than the capsid !

Max Force: 100pN

Movie: Carlos Bustamante Lab

Can one simulate the process?

Packaging process is slow (~min), all-atom simulation at physiological forces is not possible At higher forces, DNA will deform

500 bp dsDNA fragment modeled at different resolutions

24 bp/2 beads	12 bp/2 beads	6 bp/2 beads	3 bp/2 beads	1 bp/2 beads	All-atom, ~100 b
I	× ×	8			

Mapping between coarse-grained resolutions

For each helix, fit a 3D spline through bead coordinates at end of simulation Fit a spline between quaternion representation of rotations

Packaging viruses with ARBD

ARBD: Atomic Resolution Brownian Dynamics (multi-resolution)

Package DNA (CG) with ARBD, into CryoEM reconstruction of a HK97 bacteriophage capsid. A cryoEM map of the portal is fitted into the original capsid reconstruction, and DNA is packaged through the portal.

Smooth, purely repulsive grid-based potential obtained by blurring cryoEM density and adding the portal

Multi-resolution packaging dsDNA viruses

Internal pressure during packaging

Comparison to structural data

Cryo-electron microscopy

Small Angle X-ray Scattering

Simulation SAXS data were generated from CRYSOL, using an atomistic PDB of the protein coat and packaged DNA

Conclusions and outlook

Obtained first atomic-resolution structure of packaged viral particle

Developed accurate multi-resolution representation of DNA-DNA and DNA-protein interactions

To do: Extend the model to ssRNA and ssDNA viruses

Acknowledgements

• Funding through CPLC

Computations

XSEDE

Extreme Science and Engineering Discovery Environment

Jejoong Yoo

Chris Maffeo

David Winogradoff