Molecular Dynamics of DNA origami nanostructures

Christopher Maffeo PI: Aleksei Aksimentiev

Department of Physics
University of Illinois at Urbana-Champaign

Blue Waters Symposium June 5, 2018

All-atom Molecular Dynamics (MD)

Atoms modeled as classical point particles
Interactions prescribed by CHARMM36 force field
with CUFIX corrections
Simulations run using NAMD† on Blue Waters

$$U = \sum_{\text{bonded}} \left\{ \begin{array}{l} k(r_{ij} - r_0)^2 \\ + k_{\theta}(\theta - \theta_0)^2 \\ + k(1 + \cos(n\psi + \phi)) \right\} \\ + \sum_{i>j} \left\{ -U_{\min} \left[\left(\frac{R_{\min}}{r_{ij}} \right)^{12} - 2\left(\frac{R_{\min}}{r_{ij}} \right)^6 \right] \\ + \frac{Cq_iq_j}{\epsilon_0 r_{ij}} \right\} \end{array}$$

Lennard-Jones (van der Waals)

electrostatic

Single-stranded DNA hybridizes with sequence specificity

phosphate

sugar

adenine • thymine

guanine • cytosine

DNA origami

Building a structure with nanoscale precision by **folding** DNA

DNA origami structures

Yan and coworkers, Science (2011)

nature

Dietz and coworkers, Science (2012)

25nm

Yan and coworkers, Science (2013)

Shih and coworkers, Science (2009)

Dietz and coworkers, Science (2015)

Cryo-electron microscopy and all-atom simulation for DNA origami structure prediction

PNAS 109:20012

Nucleic Acids Research 44:3013

Comparison between simulation and experiment

EM density psuedo-atomic model

simulation

Interactions in a simple coarse-grained DNA model

Coarse-grained model captures programmed curvature

Design and TEM: Science 325:725

Adaptive resolution simulation of DNA origami systems

Andersen et al., Nature 2009

Birkedal Group

DNA-based Voltage sensing

Keyser Group

Experimental setup

All-atom MD simulation

ACS Nano 9:1420-1433 (2015)

Design of a nanoscale voltage sensor

Keyser and Tinnefeld Groups

Nano Lett., doi: 10.1021/acs.nanolett.7b05354 (2018)

Coarse-grained simulations of a FRET plate capture

Nano Lett., doi: 10.1021/acs.nanolett.7b05354 (2018)

CG simulation of FRET efficiency

Nano Lett., doi: 10.1021/acs.nanolett.7b05354 (2018)

Voltage sensing with DNA origami

Nano Lett., doi: 10.1021/acs.nanolett.7b05354 (2018)

DNA Ion Channels

Jejoong Yoo

Nano Letters, 13: 2351

Porins, 1 nS conductance

Yoo & Aksimentiev, JPCL 6, 4680 (2015)

DNA Ion Channels Conductance Solution Membrane channel made of $< 0.1 \, nS$ a single DNA duplex (0.1 nS) Nano Letters 16:4665 (2016) Chen-Yu Gramicidin ion channels Porin-like DNA channel 40 nS Keyser Group

ACS Nano 10:8207 (2016)

All-atom MD simulation of lipid-DNA interface

Chen Yu Li

Lipid molecule around the DNA channel can translocate to the other leaflet.

http://dx.doi.org/10.1101/241166

Lipid translocation through toroidal pores is very common and very fast

Lipid translocation through toroidal pores is very common and very fast

3-5 orders of magnitude faster than natural scramblases

Experimental verification

Keyser Group

Ohmann, Li, ... Ulrich F. Keyser, Aksimentiev, http://dx.doi.org/10.1101/241166

Works in human cells

Annexin V binds specifically to PS lipids found in inner leaflet of human cells

Breast cancer cells from the cell line MDA-MB-231

Positive control: apoptosis-inducing microbial alkaloid staurosporine

Negative control: DNA folding buffer

Scale bar is 20 µm

http://dx.doi.org/10.1101/241166

Acknowledgements

Aksimentiev Group

Aleksei Aksimentiev

Chen-Yu

Jejoong Yoo

of Living Cells

Center for Macromolecular Modeling and Bioinformatics

Philip Tinnefeld