Probing Protein Mechanics with Molecular Dynamics Simulations and Single-Molecule Experiments

PRAC: The Computational Microscope

PI: Emad Tajkhorshid Co-PIs: Rafael C. Bernardi, John E. Stone, and James C. Phillips

Rafael C. Bernardi

Theoretical and Computational Biophysics Group NIH Center for Macromolecular Modeling and Bioinformatics Beckman Institute for Advanced Science and Technology University of Illinois at Urbana-Champaign Urbana, IL

rcbernardi@ks.uiuc.edu www.ks.uiuc.edu/~rcbernardi

What are we doing in Illinois?

Prof. Emad Tajkhorshid

Prof. Zan Luthey-Schulten

Prof. Klaus Schulten

Development of NAMD & VMD:

Over 120k citations;

NIH Center for Macromolecular Modeling and Bioinformatics NSF Center for the Physics of Living Cells

Rafael C. Bernardi

Probing Protein Mechanics with Molecular Dynamics Simulations and Single-Molecule Experiments

in silico (Steered Molecular Dynamics)

Prof. Klaus Schulten Beckman Institute University of Illinois

in vitro (AFM-based SMFS)

Prof. Hermann Gaub LMU Munich, Germany

Prof. Zaida Luthey-Schulten Department of Chemistry University of Illinois

Prof. Michael Nash University of Basel, Switzerland

NIH Center for Macromolecular Modeling and Bioinformatics

NCSA Blue Waters Supercomputer

Combining *in silico* and *in vitro* Experiments

Unraveling Molecular Mechanisms of Extreme Mechanostability in Proteins

Rafael C. Bernardi

Extreme Mechanostability in Bacterial Proteins

Rafael C. Bernardi

Cellulosomes are Used by Some Bacteria to Digest Plant Fiber

Cellulosomal organisms often live in a turbulent environment.

How Mechanically Stable are Cellulosomes?

Rafael C. Bernardi

Rafael C. Bernardi

Strongest Non-Covalent Bond Ever Found

Molecular Finger Trap Puzzle

K_D = 20 nM

About the same as a typical antibody–antigen

Rupture Under Force = 600-750 pN

Antibody-antigen rupture at only ~60 pN

About half the rupture force of a covalent gold-thiol bond

C Schoeler, KH Malinowska, RC Bernardi, et. al. Ultrastable cellulosome-adhesion complex tightens under load. Nature Communications, 2014 C Schoeler, RC Bernardi, et. al. Mapping mechanical force propagation through biomolecular complexes. Nano Letters, 2015 M Scheurer, P Rodenkirch, M Siggel, RC Bernardi, et. al. PyContact: Rapid, customizable, and visual analysis of noncovalent interactions in MD simulations. Biophysical Journal, 2018

Rafael C. Bernardi

Can we use simulations to engineer modified cellulosomal proteins?

Are the cohesins in a scaffold different?

T Verdorfer, RC Bernardi, et. al. Combining in Vitro and in Silico Single-Molecule Force Spectroscopy to Characterize and Tune Cellulosomal Scaffoldin Mechanics. JACS, 2017

Rafael C. Bernardi

Unfolding Cohesins: Are them different regarding their force resilience?

T Verdorfer, RC Bernardi, et. al. Combining in Vitro and in Silico Single-Molecule Force Spectroscopy to Characterize and Tune Cellulosomal Scaffoldin Mechanics. JACS, 2017

Rafael C. Bernardi

Very high Sequence Similarity

Modeling the Cohesins

T Verdorfer, RC Bernardi, et. al. Combining in Vitro and in Silico Single-Molecule Force Spectroscopy to Characterize and Tune Cellulosomal Scaffoldin Mechanics. JACS, 2017

Rafael C. Bernardi

Simulations vs Experiments

Simulations and Experiments agree extremely well, except for Cohesin 4.

T Verdorfer, RC Bernardi, et. al. **Combining in Vitro and in Silico Single-Molecule Force Spectroscopy to Characterize and Tune Cellulosomal Scaffoldin Mechanics.** JACS, 2017

Rafael C. Bernardi

Why are Cohesins Different in Force Resilience?

T Verdorfer, RC Bernardi, et. al. Combining in Vitro and in Silico Single-Molecule Force Spectroscopy to Characterize and Tune Cellulosomal Scaffoldin Mechanics. JACS, 2017

Rafael C. Bernardi

Engineering new Cohesins

T Verdorfer, RC Bernardi, et. al. Combining in Vitro and in Silico Single-Molecule Force Spectroscopy to Characterize and Tune Cellulosomal Scaffoldin Mechanics. JACS, 2017

Rafael C. Bernardi

Engineering new Cohesins

T Verdorfer, RC Bernardi, et. al. Combining in Vitro and in Silico Single-Molecule Force Spectroscopy to Characterize and Tune Cellulosomal Scaffoldin Mechanics. JACS, 2017

Rafael C. Bernardi

Engineering new Cohesins

T Verdorfer, RC Bernardi, et. al. Combining in Vitro and in Silico Single-Molecule Force Spectroscopy to Characterize and Tune Cellulosomal Scaffoldin Mechanics. JACS, 2017

Rafael C. Bernardi

Are there other Bacterial proteins taking advantage of mechanically strong interactions?

New Antimicrobial Routes

There's a dearth of new antibiotics to treat what the U.S. Centers for Disease Control calls "nightmare bacteria."

Adhesion by Pathogenic Bacteria

L. Lactis expressing a thioester adhesin (Sfbl-A40), a covalent "**chemical harpoon**"

www.ks.uiuc.edu/~rcbernardi

Rafael C. Bernardi

Adhesion Mechanism - Staph Infections

MSCRAMMs

<u>Microbial Surface Components</u> <u>Recognizing Adhesive Matrix Molecules</u>

Targets include Fibrinogen (Fg, all chains), Fibronectin (Fn), Keratin, Collagen, Elastin, *Complement* Factor H

Experimental Setup in silico and in vitro

LF Milles, K Schulten, HE Gaub, RC Bernardi. Molecular mechanism of extreme mechanostability in a pathogen adhesin. Science, 2018

Rafael C. Bernardi

LF Milles, K Schulten, HE Gaub, RC Bernardi. Molecular mechanism of extreme mechanostability in a pathogen adhesin. Science, 2018

Rafael C. Bernardi

Bringing Molecular Dynamics to the same Statistical Standards of Single Molecule Force Spectroscopy

www.ks.uiuc.edu/~rcbernardi

Rafael C. Bernardi

Over 2400 Steered Molecular Dynamics Simulations

LF Milles, K Schulten, HE Gaub, RC Bernardi. Molecular mechanism of extreme mechanostability in a pathogen adhesin. Science, 2018

Rafael C. Bernardi

The Mechanism of the Hyperstable SdrG:Fg β interaction

LF Milles, K Schulten, HE Gaub, RC Bernardi. Molecular mechanism of extreme mechanostability in a pathogen adhesin. Science, 2018

Rafael C. Bernardi

LF Milles, K Schulten, HE Gaub, RC Bernardi. Molecular mechanism of extreme mechanostability in a pathogen adhesin. Science, 2018

Rafael C. Bernardi

LF Milles, K Schulten, HE Gaub, RC Bernardi. Molecular mechanism of extreme mechanostability in a pathogen adhesin. Science, 2018

Rafael C. Bernardi

Sequence Independent?

Mapping Hydrogen Bond Prevalence

LF Milles, K Schulten, HE Gaub, RC Bernardi. Molecular mechanism of extreme mechanostability in a pathogen adhesin. Science, 2018

Rafael C. Bernardi

Sequence Independent?

LF Milles, K Schulten, HE Gaub, RC Bernardi. Molecular mechanism of extreme mechanostability in a pathogen adhesin. Science, 2018

Rafael C. Bernardi

Sequence Independence

A Huge Evolutionary Advantage

LF Milles, K Schulten, HE Gaub, RC Bernardi. Molecular mechanism of extreme mechanostability in a pathogen adhesin. Science, 2018

Rafael C. Bernardi

Computational Resources:

Thank you all for your attention

University of Illinois at Urbana-Champaign

Beckman Institute Prof. Klaus Schulten Prof. Zan Luthey-Schulten Prof. Emad Tajkhorshid

Dr. Till Rudack (NAMD QM/MM, QwikMD) Dr. Jim Phillips (NAMD QM/MM) Dr. João Ribeiro (QwikMD) Marcelo Melo (NAMD QM/MM, GSAFold) John Stone (VMD QM/MM, QwikMD)

Institute for Genomic Biology Prof. Isaac Cann (GH Enzymatic Mechanisms) Prof. Jason Ridlon (Human Microbiome Enzymes)

Ludwig Maximilians University of Munich, Germany Prof. Hermann Gaub (AFM-based SMFS)

Dr. Constantin Schoeler (Cohesin:Dockerin) Dr. Klara Malinowska (Cohesin:Dockerin) Tobias Verdorfer (ScaA Cohesins) Lukas Milles (Bacteria Adhesion) Ellis Durner (ScaB Cohesin:Dockerin)

University of Basel & ETH Zurich, Switzerland Prof. Michael Nash (Cellulosome Mechanics)

Weizmann Institute, Israel Prof. Ed Bayer (Cellulosome Mechanics/Structure)

University of Heidelberg, Germany Maximilian Scheurer (QM/MM)

Max Planck Institute – Mülheim, Germany Prof. Frank Neese (QM/MM)

Federal University of Paraíba, Brazil Prof. Gerd Rocha (QM/MM)

Funding and Support:

